Practical applications and research examples with AgentsMCP
Use ANNEM to identify different market regimes and analyze how agent behavior changes during crisis periods vs. normal times.
# Compare different market periods
crisis_results <- run_annem_analysis(
symbols = c("SPY", "VIX", "GLD"),
n_agents = 500,
n_steps = 100
)
# Analyze agent performance during high volatility
performance_analysis <- crisis_results$agent_performance
high_volatility_agents <- performance_analysis[performance_analysis$sharpe_ratio > 0.5, ]
Leverage heterogeneous agent strategies for enhanced portfolio construction and risk management.
# Multi-asset portfolio analysis
portfolio_symbols <- c("AAPL", "MSFT", "GOOGL", "TSLA", "NVDA", "JPM", "JNJ")
portfolio_results <- run_annem_analysis(
symbols = portfolio_symbols,
n_agents = 1000,
n_steps = 250
)
# Identify best performing agent types for allocation
best_agents <- portfolio_results$agent_performance %>%
group_by(agent_type) %>%
summarise(avg_return = mean(total_return), avg_sharpe = mean(sharpe_ratio))
Study the impact of different behavioral biases and heuristics on market outcomes.
# Study social influence vs. fundamental analysis
social_heavy <- list(
social_network = 0.6, # High social influence
fundamentalist_ml = 0.2,
neural_momentum = 0.1,
contrarian_ai = 0.1
)
fundamental_heavy <- list(
fundamentalist_ml = 0.6, # High fundamental focus
social_network = 0.1,
neural_momentum = 0.2,
contrarian_ai = 0.1
)
# Compare outcomes
social_results <- run_annem_analysis(agent_distribution = social_heavy)
fundamental_results <- run_annem_analysis(agent_distribution = fundamental_heavy)
Analyze how network topology affects information propagation and market efficiency.
# Study network evolution patterns
market <- create_annem_market(n_agents = 200)
results <- market$run_simulation(n_steps = 500)
# Analyze network metrics over time
network_evolution <- market$analyze_network_evolution()
network_plots <- plot_network_evolution(network_evolution)
# Calculate information flow efficiency
network_metrics <- calculate_network_metrics(market$network)
Implement ANNEM for stress testing and scenario analysis in financial institutions.
# Stress test with different market conditions
stress_symbols <- c("SPY", "TLT", "GLD", "VIX")
stress_results <- run_annem_analysis(
symbols = stress_symbols,
n_agents = 1000,
n_steps = 100
)
# Calculate risk metrics
risk_metrics <- calculate_performance_metrics(stress_results$simulation_results$actual_returns)
max_drawdown <- risk_metrics$max_drawdown
var_95 <- quantile(stress_results$simulation_results$actual_returns, 0.05)
Use ANNEM insights to develop and backtest trading algorithms based on agent behavior.
# Develop trading strategy based on meta-learning agents
results <- run_annem_analysis(
symbols = c("AAPL", "MSFT"),
agent_distribution = list(meta_learning = 1.0), # Only meta-learning agents
n_agents = 100
)
# Extract decision patterns for strategy development
meta_decisions <- results$simulation_results$agent_decisions
strategy_signals <- apply(meta_decisions, 1, mean) # Aggregate decisions
Compare ANNEM performance against traditional econometric models.
# Comprehensive model comparison
symbols <- c("SPY", "EFA", "EEM", "AGG")
results <- run_annem_analysis(symbols = symbols, n_agents = 500)
# Get benchmark comparison
comparison <- results$benchmark_comparison
print(comparison)
# Calculate improvement metrics
annem_mse <- comparison[comparison$Model == "ANNEM", "MSE"]
var_mse <- comparison[comparison$Model == "VAR", "MSE"]
improvement <- (var_mse - annem_mse) / var_mse * 100
cat("ANNEM improves MSE by", round(improvement, 1), "% vs VAR")
Ensure reproducible results for academic publications:
# Set seed for reproducibility
set_annem_seed(42)
# Run standardized analysis
standard_config <- get_annem_config()
results <- run_annem_analysis(
symbols = standard_config$default_symbols,
n_agents = standard_config$default_n_agents,
n_steps = standard_config$default_n_steps,
save_results = TRUE,
output_dir = "reproducible_results"
)
# Generate comprehensive report
plots <- generate_annem_report(results, save_plots = TRUE)
annem_summary(results)