Skip to contents

Implements Wavelet-based Quantile Transfer Entropy analysis for financial time series. Provides tools for analyzing market interconnectedness, financial contagion, and risk spillover effects across different time scales and market conditions.

Data Requirements

The package works with financial time series data. The main input should be:

  • Return series (preferably daily)

  • Clean data without missing values

  • Sufficient length for wavelet decomposition

Usage Example


library(WaveQTE)

# Get data
data <- get_stock_data(c("AAPL", "MSFT"), "2019-01-01", "2023-12-31")

# Wavelet decomposition
wave <- lapply(1:ncol(data), function(i) wavelet_decompose(data[,i]))

# Calculate QTE
qte <- calculate_multiscale_qte(wave[[1]], wave[[2]], c(0.1, 0.5, 0.9))

# Create network
net <- create_qte_network(data, wave, scale = 1)

# Visualize
plot_enhanced_network(net, scale = 1, tau = 0.5)

References

Add relevant papers and references here.

Author

Maintainer: Avishek Bhandari bavisek@gmail.com