WaveQTE: Wavelet-based Quantile Transfer Entropy Analysis
Source:R/WaveQTE-package.R
WaveQTE-package.Rd
Implements Wavelet-based Quantile Transfer Entropy analysis for financial time series. Provides tools for analyzing market interconnectedness, financial contagion, and risk spillover effects across different time scales and market conditions.
Main Functions
Data Preparation:
get_stock_data
,process_returns
,calculate_summary_stats
Wavelet Analysis:
wavelet_decompose
,safe_wavelet_decompose
,analyze_wavelet_variance
Quantile Transfer Entropy:
calculate_qte
,calculate_multiscale_qte
,bootstrap_qte
Network Analysis:
create_qte_network
,calculate_network_metrics
,create_multiscale_networks
Visualization:
plot_enhanced_network
,plot_qte_heatmap
,plot_market_strength
Data Requirements
The package works with financial time series data. The main input should be:
Return series (preferably daily)
Clean data without missing values
Sufficient length for wavelet decomposition
Usage Example
library(WaveQTE)
# Get data
data <- get_stock_data(c("AAPL", "MSFT"), "2019-01-01", "2023-12-31")
# Wavelet decomposition
wave <- lapply(1:ncol(data), function(i) wavelet_decompose(data[,i]))
# Calculate QTE
qte <- calculate_multiscale_qte(wave[[1]], wave[[2]], c(0.1, 0.5, 0.9))
# Create network
net <- create_qte_network(data, wave, scale = 1)
# Visualize
plot_enhanced_network(net, scale = 1, tau = 0.5)
Author
Maintainer: Avishek Bhandari bavisek@gmail.com