Getting Started with AgenticWaves
Welcome to AgenticWaves, a revolutionary R package that combines autonomous AI agents with advanced financial network analysis. This guide will help you get started with the core features and functionality.
Installation
From GitHub
# Install from GitHub (recommended)
devtools::install_github("avishekb9/AgenticWaves")
# Or download and install locally
# git clone https://github.com/avishekb9/AgenticWaves.git
# cd AgenticWaves
# source("install.R")
Quick Start
Interactive Launcher
The easiest way to explore AgenticWaves is through the interactive launcher:
This opens an interactive menu with 11 different analysis options:
- π± Launch Interactive Dashboard - Full Shiny application
- π€ Quick Autonomous Analysis - AI-powered analysis with sample data
- π¬ Run Complete Demo - Full demonstration with all features
- πΈοΈ Network Analysis Only - Focus on spillover networks
- π₯ Agent Simulation Only - Agent-based market modeling
- π Load Custom Dataset - Upload your own data
- π¨ Generate Visualization Gallery - Publication-quality plots
- π Create Sample Report - Comprehensive analysis report
- π System Diagnostics - Check system status
- π View Documentation - Package help
- π§ͺ Test All Functions - Comprehensive testing
Shiny Dashboard
For interactive analysis, launch the comprehensive Shiny dashboard:
The dashboard includes: - Data upload and processing - Autonomous AI analysis configuration - Interactive network visualization - Agent simulation setup - Real-time spillover analysis - Visualization gallery - Report generation
Basic Analysis Workflow
1. Load Sample Data
AgenticWaves includes built-in sample datasets for immediate testing:
# Load global stock market data
data <- get_sample_data("global_markets", n_assets = 10, n_periods = 500)
# Other options:
# data <- get_sample_data("crypto") # Cryptocurrency data
# data <- get_sample_data("commodities") # Commodity market data
2. Create an Autonomous AI Agent
Create an AI agent that can autonomously analyze your data:
# Create an explorer-type agent
agent <- create_autonomous_agent("explorer")
# Other agent types:
# agent <- create_autonomous_agent("optimizer") # Optimization-focused
# agent <- create_autonomous_agent("predictor") # Prediction-focused
4. Agent-Based Market Simulation
Create a population of trading agents and simulate market dynamics:
# Create diverse agent population
agents <- create_enhanced_agent_population(
n_agents = 500,
behavioral_heterogeneity = 0.7,
wealth_distribution = "pareto"
)
# Run market simulation
sim_results <- simulate_enhanced_market_dynamics(
agents = agents,
asset_data = data,
n_periods = 1000,
network_effects = TRUE
)
# View simulation summary
print(paste("Final wealth Gini:", round(sim_results$final_wealth_gini, 3)))
print(paste("Average agent return:", round(mean(sim_results$agent_returns) * 100, 2), "%"))
5. Spillover Network Analysis
Analyze dynamic spillover effects and detect contagion episodes:
# Calculate dynamic spillovers
spillover_results <- calculate_dynamic_spillover_networks(
simulation_results = sim_results,
window_size = 100,
significance_level = 0.05
)
# View spillover statistics
print(paste("Average spillover:", round(mean(spillover_results$total_spillover), 2), "%"))
print(paste("Peak spillover:", round(max(spillover_results$total_spillover), 2), "%"))
print(paste("Contagion episodes:", nrow(spillover_results$contagion_episodes)))
6. Advanced Contagion Detection
Use multiple methodologies for robust contagion detection:
# Detect contagion episodes using multiple methods
contagion_results <- detect_contagion_episodes(
spillover_results = spillover_results,
detection_methods = c("threshold", "regime", "correlation", "volatility")
)
# View episode characteristics
print(contagion_results$episode_characteristics)
7. Publication-Quality Visualizations
Generate professional visualizations for papers and presentations:
# Create comprehensive dashboard
plots <- generate_publication_dashboard(
simulation_results = sim_results,
spillover_results = spillover_results,
output_dir = "publication_output",
save_plots = TRUE
)
# Individual network plot
network_plot <- plot_enhanced_network(
spillover_results$network_results,
layout = "stress",
node_size_var = "degree",
color_scheme = "viridis"
)
Data Quality and Preprocessing
Validate Your Data
Before analysis, check data quality:
# Assess data quality
quality_report <- validate_data_quality(data)
print(paste("Quality score:", quality_report$quality_score, "/100"))
print(paste("Quality level:", quality_report$quality_level))
# View recommendations
if(length(quality_report$recommendations) > 0) {
cat("Recommendations:\n")
for(rec in quality_report$recommendations) {
cat("β’", rec, "\n")
}
}
Process Financial Data
Clean and preprocess your data:
# Process data with outlier removal
processed_data <- process_financial_data(
data = data,
remove_outliers = TRUE,
standardize = FALSE
)
# Detect asset classes automatically
asset_classes <- detect_asset_classes(processed_data)
print(asset_classes)
Custom Data Analysis
Load Your Own Data
AgenticWaves can analyze your custom datasets:
# Load CSV data
custom_data <- read.csv("your_financial_data.csv")
# Process for AgenticWaves
processed_custom <- process_financial_data(custom_data)
# Validate quality
quality <- validate_data_quality(processed_custom)
# Run analysis
custom_agent <- create_autonomous_agent("optimizer")
custom_results <- custom_agent$analyze_autonomously(processed_custom)
Next Steps
- Explore the Interactive Dashboard for hands-on analysis
- Read the Agent-Based Modeling guide for detailed ABM information
- Check the Network Analysis article for advanced spillover techniques
- Review the Visualization Guide for publication-ready plots
- Try the Advanced Analysis tutorial for complex workflows
Getting Help
-
Package Documentation:
?AgenticWaves
-
Function Help:
?function_name
(e.g.,?create_autonomous_agent
) - GitHub Issues: Report bugs or request features
- Email Support: bavisek@gmail.com