High-level analysis functions for running complete ANNEM studies, performance validation, and result generation. Run Complete ANNEM Analysis

Execute a comprehensive ANNEM empirical analysis including simulation, performance evaluation, network analysis, and benchmark comparison.

run_annem_analysis(
  symbols = c("AAPL", "GOOGL", "MSFT", "TSLA", "NVDA"),
  n_agents = 1000,
  n_steps = 250,
  agent_distribution = NULL,
  save_results = TRUE,
  output_dir = "annem_results",
  verbose = TRUE
)

Arguments

symbols

Character vector of stock symbols to analyze

n_agents

Number of agents in the simulation (default: 1000)

n_steps

Number of simulation steps (default: 250)

agent_distribution

Named list of agent type proportions (optional)

save_results

Logical, whether to save results to disk (default: TRUE)

output_dir

Character string, directory for saving results

verbose

Logical, whether to print progress messages (default: TRUE)

Value

List containing:

  • market: ANNEMMarket object

  • simulation_results: Complete simulation data

  • agent_performance: Agent performance metrics

  • network_metrics: Network evolution data

  • benchmark_comparison: Model comparison results

  • validation_results: Mathematical framework validation

Examples

if (FALSE) { # \dontrun{
# Basic analysis
results <- run_annem_analysis(
  symbols = c("AAPL", "MSFT", "GOOGL"),
  n_agents = 500,
  n_steps = 100
)

# Custom agent distribution
custom_dist <- list(
  neural_momentum = 0.3,
  contrarian_ai = 0.2,
  fundamentalist_ml = 0.2,
  adaptive_noise = 0.1,
  social_network = 0.1,
  meta_learning = 0.1
)

results <- run_annem_analysis(
  symbols = c("AAPL", "MSFT"),
  agent_distribution = custom_dist
)
} # }